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Abstract
Strong-coupling expansion is performed for the lattice φ4 model in
1 + 1 dimensions. Because the strong-coupling limit itself is not solvable,
we employed numerical calculations so as to set up unperturbed eigensystems.
Restricting the number of Hilbert-space bases, we performed linked-cluster
expansion up to 11th order. We carried out an alternative simulation by means
of the density-matrix renormalization group. Thereby, we confirmed that
our series-expansion data with a convergence-acceleration trick are in good
agreement with the simulation result. Through the analytic continuation to the
domain of negative biquadratic interaction, we obtain the false-vacuum decay
rate. Contrary to common belief that the tunnelling phenomenon lies out of
perturbative treatments, our series expansion reproduces the instanton-theory
behaviour for a high potential barrier. For a shallow barrier, in contrast, our
result tells us that the relaxation is no longer described by an instanton, but the
decay rate acquires notable enhancement.

PACS numbers: 64.60.My, 03.65.Xp, 12.38.Cy, 78.20.Bh

1. Introduction

Suppose that a system is placed in a certain metastable state surrounded by a local potential
minimum, the system would be unstable to decay to a global minimum assisted by either
quantum or thermal fluctuations. Such processes are called false-vacuum decay and
metastability relaxation and they are considered to be non-perturbative in nature. Hence,
in order to calculate the decay rate (lifetime), ingenious treatments have been invented so far
[1–4]. Those treatments rely on the semiclassical approximation. That is, the treatments take
into account the quadratic fluctuations around the field configuration which extremizes the
Euclidean action. Such field configurations are called instanton, bounce and (critical) droplet.
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Therefore, these treatments, just like the WKB approximation in wave mechanics, are not
justified for strong fluctuations (namely, short lifetime). In addition, it is quite cumbersome
to improve the approximation systematically.

In order to compensate for the above drawback, a first-principles calculation scheme free
from any biased errors would be desirable. As for the discrete variable model (kinetic Ising
model), actually, a remarkable tour de force scheme was invented by Günther et al [5]. They
introduced the so-called constrained-transfer-matrixmethod, which meets the non-equilibrium
situation. Then, they carried out extensive numerical calculations of the transfer matrix. In
consequence, they extracted the imaginary part of the free energy, which is to be identified as
the decay rate. To the best of our knowledge, it is the first ab initio approach to the decay rate
in the presence of many-body correlations. Their result supports the aforementioned analytic
theory based on the droplet picture. (Besides this, Monte Carlo simulation has been utilized to
evolve the relaxation processes [6, 7], where the number of Monte Carlo steps is interpreted
as the time progression. Though the interpretation is, in a strict sense, not fully justified, the
simulation result is fairly in accordance with the droplet picture.)

In contrast, as for a continuous-variable model such as the φ4 model, the above approach
does not apply, and so far, no attempt at ab initio calculation has been reported. For the
quantum-mechanics level (0 + 1 dimension), however, substantial progress has made [11]:
Suzuki and Yasuta obtained a compact expression for the decay (tunnelling) rate based on
the weak-coupling expansion and succeeding Borel resummation [12, 13]. They succeeded
in calculating the tunnelling rate beyond instanton calculus. Alternatively, from the weak-
coupling expansion, Karrlein and Kleinert obtained, remarkably enough, strong-coupling
series by means of the so-called variational perturbation [14]. Both approaches pursue a first-
principles calculation scheme beyond instanton calculus. As a consequence, these theories
clarified how the instanton description fails for a low potential barrier; the true decay rate is
suppressed owing to inter-instanton interaction. At present, extension to the many-body case
appears to be unsuccessful [13].

The aim of this paper is to investigate the false-vacuum decay rate for many-body system
through series expansion. We studied the lattice φ4 model in 1 + 1 dimensions,

H =
∑

i

(
1
2π2

i + 1
2 (φi − φi+1)

2 + 1
2φ2

i + gφ4
i

)
(1)

with the canonical commutation relations [φi, πj ] = iδij , [φi, φj ] = 0 and [πi, πj ] = 0.
Note that for g < 0, the potential is not bounded below and renders the state φ ≈ 0 unstable
(false vacuum). The decay rate due to quantum fluctuations is our concern. We will show
that in contrast to 0 + 1 dimension mentioned above, the decay rate is enhanced owing to
inter-instanton interaction.

The present paper is organized as follows. In section 2, we calculate the decay rate by
means of the strong-coupling expansion. We explain the methodological details, and check the
validity by means of an alternative simulation. In the last section, we summarize the present
paper.

2. Results and discussions

In this section, we will calculate the false-vacuum decay rate of the model (1) through the
strong-coupling expansion. To begin with, we will formulate the basis of the expansion.
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2.1. Strong-coupling expansion

Making use of the rescalings φ → g−1/6φ and π → g1/6π , we arrive at the expression,

H = g1/3 h (2)

where

h =
∑

i

(
1
2π2

i + φ4
i +

1

g2/3

(
1
2 (φi − φi+1)

2 + 1
2φ2

i

))
. (3)

According to the formula, the quadratic potential terms are regarded as perturbations, and so
the ground-state energy is expanded in terms of the strong-coupling parameter λ = 1/g2/3;

Eg = g1/3 eg (4)

where

eg =
∑
n=0

an λn. (5)

Note that the unperturbed Hamiltonian h|λ=0 is biquadratic. Hence, it is not quite
straightforward to perform perturbations with respect to this limit. Here, however, we will
manage the perturbation expansion with the aid of computer calculations.

2.2. Linked-cluster expansion

The unperturbed Hamiltonian is a collection of independent anharmonic oscillators and the
perturbation introduces coupling among them. In such cases, the linked-cluster expansion
is useful to generate perturbation series. The linked-cluster expansion is a method of, so
to speak, computer-aided diagrammatic expansion [8–10]. To perform cluster expansion,
we should nevertheless set up unperturbed eigensystems. For that purpose, we must
diagonalize the Hamiltonian of each local anharmonic oscillator hi = π2

i /2 + φ4
i . We

carried out the diagonalization in the following way. (a) An oscillator spans infinite-
dimensional Hilbert space. In order to perform a computer simulation, we need to restrict
the number of bases. For that purpose, we prepare low-lying M = 400 states of a
harmonic oscillator with quadratic potential �2φ2/2, namely, {|n〉�} (n = 0, . . . ,M − 1).
Note that the diagonalization of hi is now manageable, because the Hilbert space is spanned
by the finite number of bases just prepared. Here, � is a freely tunable variational
parameter and we adjust it so as to minimize �〈0|hi |0〉�, namely, we choose � = 61/3.
(This idea is reminiscent of Feynman and Kleinert [15], who calculated the thermodynamics
of an anharmonic oscillator by replacing the biquadratic potential with an optimal
quadratic one.) (b) With respect to the Hilbert-space frame {|n〉�} (n = 0–M − 1),
we represented the anharmonic-oscillator Hamiltonian hi and diagonalized it to obtain the
energy levels and the eigenvectors. (c) Provided that those eigenvectors are at hand, we carry
out secondary Hilbert-space truncation: we extract m low-lying eigenvectors among M and
discard the others. Henceforth, those m vectors are to be used to span the (intra-oscillator)
Hilbert space. (Such a Hilbert-space restriction scheme originates in Wilson, who diagonalized
a huge cluster of conduction electrons [16].)

To summarize, we truncated the intra-oscillator bases through two steps. First, we utilized
the eigenvectors of a harmonic oscillator to span the Hilbert-space frame. Those were not very
efficient, and so we prepared a rather huge number of M = 400 bases in practice. In that sense,
the second truncation was significant, where we retained only m low-lying bases after solving
the eigensystems of the intra-site Hamiltonian hi . These bases turned out to be very efficient
(see below), and only m = 10–25 bases are necessary so as to achieve reliable calculations in
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the succeeding linked-cluster expansion. (Note that to perform the linked-cluster expansion,
we need to store, in computer memory, huge Hilbert-space vectors for clusters consisting of
many oscillators.)

Before going into the cluster expansion, we will check the reliability of the Hilbert-space
restrictions. We treat a single anharmonic oscillator (namely, we ignore the inter-oscillator
coupling) with respect to the restricted Hilbert space mentioned above. We used the ordinary
Rayleigh–Schrödinger perturbation theory, because the system is a one-body problem. The
strong-coupling perturbation coefficients are reported in the literature [17]. We observed the
following encouraging features. First, the choice of M = 400 is sufficient. Namely, it reaches
the limit of numerical round-off error (we used an extended precision of 16-byte real number)
and further increase of M just alters the final few digits. Secondly, we found that rather small
m yields precise data. For example, m = 15, which would seem exceedingly small, reproduces
the perturbation coefficients reported in [17] with a high precision of order ∼10−17 (that is
not relative but absolute error). Moreover, the precision is maintained even for high-order
perturbation coefficients. For example, the choice of M = 400 and m = 25, for which the
simulation takes ten minutes or so, is sufficient to reproduce the full result of [17].

Encouraged by these findings, we performed the linked-cluster expansion for the lattice
φ4 model (3). We obtained the perturbation series up to 11th order. The strong-coupling series
is given by,

eg = 0.667 986 259 155 777 108 270 962 016 88

+ 0.431 006 350 142 594 730 060 957 382 75λ

− 0.101 488 095 211 118 632 941 259 445 02λ2

+ 0.048 038 456 464 436 374 420 347 753 41λ3

− 0.029 018 513 979 643 624 653 232 757 064λ4

+ 0.019 777 791 330 895 673 863 274 529 570λ5

− 0.014 454 753 622 894 705 466 341 917 665λ6

+ 0.011 061 391 245 982 279 114 094 315 86λ7

− 0.008 749 346 526 9972λ8

+ 0.007 096 747 591 805λ9

− 0.005 871 428λ10 + 0.004 936 22λ11 (6)

with uncertainties only in the final digits.

2.3. Resummation and its verification with DMRG

In the above, we obtained strong-coupling series expansion for eg (6). We plotted the result
in figure 1. We truncated the series at various orders, which are indicated for the respective
curves. We see that the curves start to deviate at λ ≈ 1 and higher order data exhibit even
worse convergence. Hence, it is suggested that the series (6) has finite convergence radius
|λ| ∼ 1. In order to go beyond the convergence bound and extract meaningful physics, we
have to process our data with some resummation trick.

We found that Aitken’s δ2-process [18],

S′
n = Sn − (Sn − Sm)2

Sn − 2Sm + Sl

(7)

is very useful to accelerate the convergence of our series. Here, Sl, Sm and Sn are three
successive partial sums truncated at the respective orders. We plotted the resummed results in
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Figure 1. Strong-coupling series eg(λ) (6) is plotted. The series is truncated at various orders. A
sudden deviation may indicate the convergence bound. Convergence-accelerated data are presented
in figure 2.
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Figure 2. The same as figure 1, but the data are convergence-accelerated by formula (7). A
symbol such as l-m-n indicates that the data are processed using the three partial sums Sl,
Sm and Sn. We also present a first-principle simulation result by means of the density-matrix
renormalization group. We confirm that our series achieves good convergence over the range
λ < 2.

figure 2. A symbol such as 5-6-7 indicates that the data are accelerated with the partial sums
of S5, S6 and S7. We see that the data exhibit pronounced convergence improvement. Our data
may be valid up to λ ≈ 2.

In order to check the convergence bound more definitely, we performed an alternative
first-principles simulation with the density-matrix renormalization group. Our algorithm is
standard. For a comprehensive overview of this algorithm, interested readers may consult
[19]. A full account of the technical details specific to the (1 + 1)-dimensional scalar field
theory will be found in our paper [20]. (In this paper, we studied field φ confined within the
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rigid-wall potential V (φ). In order to match the present case, one has to replace V (φ) with
φ4.) The numerical error was checked thoroughly in [20] and it was found to reach 10−7.
We monitored the performance in the present case as well and found that the precision was
maintained. The error would be far less than the symbol size shown in the plot 2.

The first-principles data are shown in figure 2 as well. We see that our resummed data are
valid up to λ ≈ 2 fairly definitely.

Finally, we mention a singularity occurring at λ ≈ −2(<0); see figure 2. It is noteworthy
that for λ < 0, the potential becomes of double-well form. Therefore, at a certain critical λ,
there would be an Ising-type phase transition. The singularity found in our data may indicate
the onset of the transition. Determination of the critical point for the lattice φ4 model is
attracting considerable attention recently in the context of the quantum ferroelectric transition
[21]. We will pursue this issue elsewhere and in the present paper, we will not go into any
further details.

2.4. Analytic continuation to g < 0: false-vacuum decay rate

In the above, we attained good convergence of the series expansion (6) with the aid of the
convergence-acceleration trick (7). Armed by this achievement, in this subsection, we access
the domain of g < 0 through the analytic continuation g → −g. For g < 0, the potential is not
bounded below and exhibits a local potential minimum in the vicinity of φ = 0 (metastability).
Because the series expansion (6) is an irrational function in terms of g, the analytic continuation
renders an imaginary part in the ground-state energy. Thereby, from it, we can read off the
false-vacuum decay rate. In practice, the analytic continuation is done through the path
g exp(iθ) of θ = 0 → π . That is, the term g1/3 gives rise to the contribution g/2 + i

√
3g/2

after g → −g.
So far, to calculate the decay rate, the instanton technique is used. The technique is

justified for sufficiently large potential barrier (small g). In the following we will show that
our series-expansion approach covers the instanton theory.

In figure 3, we plotted the false-vacuum decay rate multiplied by g, namely, g Im Eg(−g),
against 1/g. The factor g should kill the prefactor of a dominant exponential contribution.
That is, the instanton theory predicts that the decay rate should obey the formula,

Im Eg(−g) ∝ 1
g

exp(−S/g) (8)

where S denotes the Euclidean action of one instanton. We solved the instanton solution
numerically and obtained the estimate,

S = 1.189 1027(5). (9)

To be concrete, we will sketch the calculation method. First of all, one must reformulate
the Hamiltonian formalism (1) into the Lagrangian formalism in the Euclidean spacetime.
Thereby, we considered the system with 28 sites and imaginary time β = 28. The imaginary
time is discretized into 8000 intermediate time slices. ( Note that now the field is defined in the
discretized spacetime.) Because the instanton solution (field configuration) should minimize
the Euclidean action, the problem reduces to the minimization of a multi-dimensional function.
That computation is readily achieved by the utilities supplied in simulation guide books such
as [18]. The amount of error is estimated by changing the system sizes and discretization
intervals.

We would like to draw the reader’s attention to the fact that the formula (8) has an essential
singularity at g = 0. That is why we selected the strategy of approaching from g → ∞ rather
than from g = 0.
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Figure 3. The false-vacuum decay rate (multiplied by g) g Im Eg(−g) is plotted. The symbol
l-m-n indicates that the data are convergence-accelerated by the use of three partial sums Sl, Sm and
Sn. We plotted a slope exp(−S/g) which is predicted by the instanton theory; see text. Note that
the instanton treatment is justified for large 1/g. As a matter of fact, our series expansion obeys
the prediction for 1/g > 1. For 1/g < 1, in contrast, our result exhibits notable enhancement.
Hence, it is suggested that the inter-instanton interaction rather enhances the relaxation.

Let us turn to the discussion of our result of figure 3. As mentioned above, the instanton
result (8) is validated for large 1/g. As a matter of fact, for 1/g > 1, our data approach
the instanton prediction; we have drawn the slope of (8). In this respect, the convergence-
acceleration trick (7) is crucial in our study, because it enables us to attain good convergence
up to 1/g ∼ 3, which appears to reach the instanton region

For 1/g < 1, on the other hand, our data indicate rapid enhancement of the decay rate,
namely, the curve starts to deviate from the instanton prediction. It is to be stressed that
our treatment is justified for the strong-coupling limit (1/g � 1). Therefore, it is found
that the inter-instanton correlation gives rise to enhancement of relaxation. This feature is
to be contrasted with that of 0 + 1 dimension, where the inter-instanton correlation results
in suppression of the decay rate. Enhancement in 1 + 1 dimensions was speculated in the
former study [13], where the authors utilized the weak-coupling expansion and the Borel
technique. Although their series does not show any indication of convergence, their result
actually captures a signal of relaxation enhancement.

According to Kleinert, in the regime g � 1, the decay process is governed by ‘sliding’
rather than instanton theory [22]. Nevertheless, we stress that the present series-expansion
approach covers both instanton (1/g > 1) and sliding (1/g < 1) regimes in a unified way.
Moreover, our series is readily improved systematically just by performing further cluster
expansion.

In the above, we found that at 1/g ≈ 1, there exists a crossover boundary separating two
distinctive regimes. Our result supports the previous proposal of [13]. The authors calculated
the effective potential and found that for g > 1.17, the potential barrier is smeared out by quan-
tum fluctuations. Their criterion would be sensible for separating instanton and sliding phases.

In figure 3, we see that the data of 9-10-11 and 8-9-10 show poor convergence. That may
possibly be due to the fact that our 10th and 11th perturbation coefficients have rather few
significant figures available.
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Finally, we recollect past findings for the φ4 theory in continuous spacetime. Brézin
and Parisi completed the instanton calculation and obtained the formula Im Eg(−g) =
(0.081 5435/g) exp(−1.462 6121/g) [23]. We notice that the instanton action is similar
to that of our lattice model. Perhaps the decay process would be identical between the lattice
model and the continuous-field theory.

3. Summary and discussions

So far, several ab initio approaches have been proposed in order to calculate the decay rate
beyond the semiclassical approximation. In particular, the φ4 model in 0 + 1 dimension
has come under thorough investigation [11–14], while the extension to the many-body case
remains unsuccessful. In the present paper, by means of the strong-coupling expansion,
we studied the (1 + 1)-dimensional lattice φ4 model (1). We demonstrated that the linked-
cluster expansion method works very efficiently, provided that the Hilbert-space restriction
is processed properly. In addition, we found that the convergence-acceleration trick (7) is
significant. In fact, the convergence-accelerated sum reproduces the first-principle data for a
considerably wide range λ < 2.

Based on the above achievements, we surveyed the domain of metastability through
the analytic continuation g → −g. We are concerned about the false-vacuum decay rate
Im Eg(−g); see figure 3. Our result indicates that there are two regimes. For g < 1, our
result obeys the prediction by the instanton theory. It is to be stressed that the convergence
acceleration (7) is significant to reach the instanton regime. For shallow potential barrier
g > 1, the relaxation is no longer described by an instanton, but the relaxation rate acquires
notable enhancement. According to Kleinert, for g > 1, the relaxation is driven by sliding
rather than instanton theory. Nevertheless, we stress that our series-expansion approach does
cover both regions with a unified framework, and it is readily improved systematically just by
continuing the perturbation further. It is promising that the present method might be applied
to other wide classes of metastable systems.

As mentioned above, we also performed the density-matrix-renormalization-group
simulation. From the simulation data, we are able to extract perturbation coefficients by
polynomial fitting. This technique is applicable to those models that even possess complicated
interactions and spatial inhomogeneity. Tunnelling phenomena assisted by an impurity is of
current interest [24]. However, ambiguities in estimating fitting errors are not fully resolved
at present. This is left for future study.
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